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SARDAR PATEL UNIVERSITY
B.Sc.(MATHEMATICS) SEMESTER - IV
QUESTION BANK OF US06DMTH26
( Number Theory - 2 )

Unit-1

1. (i)Prove that the indeterminate equation ax + by = ¢ has solution iff d/c, where (a,b) = d.
(i)If x = 9,y = yo is a particular solution of ax + by = ¢ then prove that general solution can be
a
Writtenasm:x(ﬁ—at; y:yo—at, where t € 7Z.
2. If (a,b) = 1 then prove that any solution of ax + by = ¢ can be written as x = zq + bt ,
y=1uyo—at,tE€Z, wherex = zq ; y = 1o are particular a solution of ax + by = c.

3. Solve the equation 525z + 231y = 42 .

4. Find positive integer solution of following equation
(i) 7x+ 19y =213
(il) 19z + 20y = 1909
(iii) 2*+2y—6=0
. x + 3y
Tx + 19y = 213 — =
(iv) 7z +19y V) v

5. Find general solution of equation
(i) 50z + 45y + 36z = 10
(ii) 8 — 18y + 10z = 16
(iii) 50z + 45y + 60z = 10

1

6. Find all relatively prime solution of 22 4+ y? = 2% with 0 < 2z < 30 .

7. Prove that the positive integer solution of x71 +y~! = 27! | (z,9,2) = 1 has and must have the
form z =a(a+b), y=0b(a+b), z=ab, wherea, b > 0, (a,b) = 1.

8. Prove that the general integer solution of 2? + 3?> = 2?2 with z , y, 2 > 0,
(z,y) = 1 and y even is given by # = a®> — b* , y = 2ab, z = a* + b*, wherea , b >0, (a,b) =1
and one of a,b is odd and the other is even.

9. Prove that the integer solution of z? 4 2y* = 22 (x,y)=1 can be expressed as
r=+(a® — 20%) , y = 2ab, z = a® + 21°.

10. Prove that the integer solution of 272 +y~2 =272, (z,y,2) = 1 is given by
r=(a* - b)), y=2ab(a® +b*), z = 2ab(a® — b?) , where a >b >0, (a,b) =1 and a,b both
can not be odd or even .

11. Prove that a general integer solution of 22 + y* + 22 = w? | (z,y,2,w) = 1 is given by
r=(?-b0+—-d?), y=2ab—2cd, z =2ad +2bc, w=a®+b*+ 2+ d%

12. Prove that the equation z* + y* = 22 has no solution with nonzero positive integers =z , v , z .
Hence prove that z* — 4y* = 22 has no nonzero positive integer solution.
OR : Prove that 2* + y* = 22 has no nonzero positive integer solution.

Unit-2
1. Define Congruent modulo n .

2. Prove that a = b(mod n) iff a and b have the same nonnegative remainder when divided by n.
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Prove that congruent is an equivalent relation.
If a3 = by(mod n) and ay = by(mod n),then prove the following:

(a) a1 + ag = by + by(mod n)

(b) ca; = cby(modn) , V¢ € Z.

(c) c+ar=c+b(modn),VeceZ
(d) ajas = biby(mod n)

() ay™ =b™(modn), ¥ m € N, by using mathematical induction method.

If ca = eb(mod n) and (c,n) =1 then prove that a = b(mod n)

Prove that 22 + y? = 22 has no prime solution.
OR: Prove that Pythagoras equation has no prime solution.

Prove that a positive integer n is divided by 3 iff the sum of its digits is divisible by 3.
OR : Prove that 3/n iff 3/(sum of digits of n ) .

. Prove that a positive integer n is divided by 9 iff the sum of its digits is divisible by 9.

Find a necessary and sufficient condition that a positive integer is divisible by 11.
Find a necessary and sufficient condition that a positive integer is divisible by 7.

Find a necessary and sufficient condition that a positive integer is divisible by 13.

Prove that every number containing more than two digits can be divided by 4 iff the number

formed by last two digits can be divided by 4.

Is 765432 divided by 3,4,5,7,9,11,13 7

Is 527590 divided by 11 7

Is 237897 and 73912 are divided by 11 ?

Using divisibility test check whether 27720 is divisible by 2,3,4,5,7,9,11 or not .
If a =b(modm) ; a=b(modn) and (m,n) =k then prove that a = b(mod k)

Unit- 3

. Define complete residue system modulo m and reduced residue system modulo m with example .

Prove that a set of k integers aq, as,as. .., a; is a complete residue system modulo m iff
(i) k=m (ii)a; # aj(modm) , Vi #j .

. If ay,as,a3...,a; is CRS modulo m and (a,m) = 1 ,then prove that

aay + b,aas + b,aas + b, ... ,aa, + b forms a CRS mod m , where b is any integer.

. Prove that a set of k integers ay, as, as, ..., ax is a reduced residue system modulo m iff

(i)k = ®(m) (ii)(a;,m) =1, Vi (iii) a; # aj(mod m) , Vi#j.

Ifar, as, as,..., as@m) is RRS modulo m and (a,m) =1 ,then prove that

(i) aar, aay, aas,... , aae@y) is RRS mod m.
(i) a1 +b, aas +b, aas+b,... , aae@m) + b is not RRS mod m , where b is any integer.
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10.
11.
12.
13.

14.
15.

16.

17.

18.

19,
20.

21.

22.

23.

24.

25.

Is {27,80,96,113,64} a CRS modulo 5 ? Justify .
Check whether {26, 37,48, 59,10} is a CRS modulo 5 or not.
Is {83, 84, 85,86, 87,88} a CRS modulo 6 7 Justify.

State and prove Euler’s theorem.
OR : If (a,p) = 1, p is prime , then prove that a?~! = 1(mod p) .

State and prove Fermat’s theorem. OR: State and prove Fermat’s little theorem.

If a™ = 1(mod m) and d is order of a modulo m then prove that d/n .
Define Euler’s function . Prove that Euler’s function is multiplicative function.

Prove that Euler’s function is multiplicative function and hence find ¢(142296)
OR :If (a,b) = 1 then prove that ¢(ab) = ¢(a)p(b).

Find all positive integers m and n such that ¢(mn) = ¢(m) + ¢(n).
Prove that ®(p*) = p* — p*~! ,where p is prime.

1
OR : Prove that ®(p*) = p* (1 - —) , where p is prime.

p

Find ¢(128) , 4(625) , ¢(81).

k .
In usual notation prove that > ®(p‘) = p* , where p is prime.
i=0

Find 6(32) + 6(16) + 6(8) + 0(4) + 6(2) + 6(1) OR Find 3> 8(2) .

Find ¢(243) 4+ ¢(81) + ¢(27) + ¢(9) + ¢(3)

If m = p™py2ps® ... p"* where all p; are primes then prove that
P1 P2 "P3 Py p

) (6
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Prove that ¢(ab) = $a)¢(b)d , where d = (a,b).
¢(d)

E"{ove that the sum of ¢(m) positive integers less than m m > 1 and relatively prime to m is

§¢(m)-

If m is positive integer then prove that ®(m) = mg: @ = d%: i (%) d.

Prove that ; wu(d)p(d) = 0 iff m is even.

d/m
Prove that m is prime iff ¢(m) + S(m) = mT'(m).
Unit- 4

. Define Congruence in one unknown .
. Prove that az + b = 0(mod m),where (a,m)=1 has exactly one solutionz = —a®™ =1 b (mod m).

. Prove that ax + b = 0(mod m) , where(a,m) = d , d > 1 has solution iff d/b.Also prove that it
has d solutions x; = a + i%(mod m),i1=0,1,2,...,d—1, of which x = a <m0d %) is unique

. a b m
solution of 837 + 7= 0 (mod E)



. Prove that ax + by + ¢ = 0(mod m) has solution iff d/c , where d = (a,b, m). Also prove that it
has md solutions.

. Prove that the system of congruences , x = a(mod m) ; = = b(mod n) has solution iff
a = b(mod (m,n)) . Also prove that system has unique solution with respect to modulo [m,n].

If(a,m) =1 a™ ! =1(mod m) , and a™ # 1(mod m) for any proper divisor n of m — 1 then
prove that m is prime .

. Solve the equation

(i) 12z + 15 = 0(mod 45)(ii) 18z = 30(mod 42)(iii) 9z = 21(mod 30)

(iv) 103z = 57(mod 211)(v) 111z = 75(mod 321) (vi) 863x = 880(mod 2151)
(vii) 2z + Ty = 5(mod 12) (viii) 6z + 15y = 9(mod 18)

. State and prove Chinese remainder theorem . OR : State and prove Sun-Tsu theorem.

. Solve the system of congruences

(i) z=2(mod3) ; x=3(mod5) ;

(ii)) z =1(mod4) ; x=3(modb5) ;

(iii) 22 =1(mod 5) ; 3z = 1(mod 7).
(iv) = —-2(mod 12) ; x=6(mod 10) ; z = 1(mod 15)

x =2(mod 7).
x = 2(mod 7)

10.
11.

Find order of 5 modulo 13 .
Find order of 2 modulo 7 .
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NUMBER THEORY
Unit 4

4 Congruence equation in one unknown

Let f(z) = ag + a1m + asa® + .......... + a,x", then congruence equation in one unknown and of
n'" order is of the form f(z) =0 (mod m), a, Z 0 (mod m) (i.e. m ¥ a,,)
* f(a) =0 (mod m), then we say that x = a (mod m) is solution of f(z) =0 (mod m).

% Theorem 1 : Prove that ax +b =0 (mod m), where (a,m) =1 has exactly one solution

r = —a®™~1 b(mod m).
Proof :
Here,(a,m) =1 and ax +b =0 (mod m).  .ccoevevrneenn. (1)
Let x1, 29, ....... , T, be a CRS modulo m.
= ari,axsy, ....... , ax,, be also CRS modulo m.
= ary +bars+0,....... ,aZTy, + b be also CRS modulo m.

Then, Exactly one of them say, azy + b
axy +b=0 (mod m).

.. We say that equation (1) has exactly one solution.

Also, (a,m)=1
= a®™ =1 (mod m) (.- By Euler’s Theorem)
= a®™zy =12 (mod m) ., (2)

Also, by (1) az+b=0 (mod m).

= ax = —b (mod m)
= a¢(m)*1 ar = _a¢(m)~1 b (mod m)
= a®™ = —a®™~1 b (mod m) e (3)

by (2) and (3), we get

Hence Proved.

% Theorem 2 : Prove that ax + b = 0(mod m), where (a,m) = d, d > 1 has solution
if and only if d | b. Also prove that it has d solutions.

z; = a+i% (mod m),i=0,1,2,.....d— 1. of which z = a (mod %) is unique
solution of ;
a m

Proof :

Here, (a,m) =d and ax +b=0 (mod m) = m |ax +b
Now, (a,m)=d= d|m, d|a

Now,d|m & m|(ax+0b) = d|(ax+b). = d]|ax.
Thus, we have d | ax & d| (ax +b)

= d| (ax +b— ax)

=d|b



Converse Part:

We have d | b and (a,m) = d. = ( %
b
h -e€Z
ere, — eb
a m .
i + 7= 0 (mod E) has solution.

= ax + b =0 (mod m) has solution.
We have ax + b =0 (mod m), d = (a,m)
Here d | b, So Equation (1) has Solution.
Let x = x; is solution of equation (1)

iear; +b=0 (mod m) .o (2)

n)es

Claim : z =2, + mt, t € Z is also Solution of (1)

d
m a
Now, a(:rl + Et> =ar, + Emt
= ax; + %mt = (—b) + 0 (mod m)
m
= a(zl + Et> +b=0 (mod m)

=z =1+ %t is solution of (1), t € Z

By Division Algorithm on t and d

t=qd+r, 0<r<dor 0<r<d-—1

x:x1+%(qd+r)

m
=>$=w1+mq~l—gr

:>x53:1+0+%r (mod m)

:>xle+%r(modm), 0<r<d-1

Putt=0,1,2,...d—1

Consider set of d Solutions

m m m
(.731,513'1 + —, T+ 2—, sty B -+ (d— 1)3)

d d

Taking ¢, t5 € 0,1,2,....,d-1 such that

F 0D =y 4ty (mod m)
I 1d_1)1 Qd moa m

=t =ty (mod m) = m| (t; — t3)



We Have, d = (a,m) =d|m & m| (t; — ta)
=d | (t, —t2)

= d | (|t1 —t2])

But0<t; —t,<d—-1

This is Possible when t; —t, =0 = t; =1ty

.. Integers of set (3) are Incongruent Solution.

Hence Proved.

% Theorem 3: Prove that az + by + ¢ = 0 ( mod m ) has solution. if and only if d | ¢. where,
d = (a,b,m) and also prove that it has total md solutions.

Proof:

First, let ax + by + ¢ =0 ( mod m ) has solution. ... (1)
Here, (a , b, m)=d, then

=d|a,d|b, d|m.
=d|ax, d|by, d|m.

Now, d|m and by (1) = m | (ax + by +¢)
=d|ax+by+c
Now, we have d | ax, d | by, d| (ax+ by + c)

= d | (ax + by + ¢ — ax — by)
=d|c

Converse Part:
If d | ¢ then we have to prove that ax 4+ by + ¢ = 0 (mod m) has solution.
Here, (a, b, m) = d,

Let d; = (a,m), then d = (dy, b).
Since, d | ¢ and d = (b, dy).
so, by + ¢ =0 (mod d;) has solution.  ........ (2) [by theorem (2)]

Clearly, Eq. (2) has total d solution.

By, Eq. (2) we say that d; | by + c.
= by + ¢ = c1d; for some ¢; € Z

we can write, dy | c1dy, (a, m) = dy, then by thm(2), we say that
ax + c1d; = 0 ( mod m ) has solution. ......... (3)
clearly, Eq. (3) has d; solution.

Thus, az + by + ¢ = 0 (mod m) has solution.
Now, we prove that axz + by + ¢ = 0 (mod m) has total 'md’ solutions.



From Eq.(2) we say that,
by + ¢ =0 (mod d; ) has total 'd” solution with modulo d;.

d1 by + dml ¢ = 0 (mod d_ldl) has solution.
also, it has ( — ) (b,dy) = dﬂ d solution with modulo m. .......... (4)
1
Now, by Eq. (3),
ax + cid; = 0 (mod m) has total dy’ solution with modulo m.

m

Hence, given Eq (1) has total d—d X d; solution.
1

i.e. total 'md’ solutions.

Hence proved.
% Theorem 4 : Prove that the system of congruences, x = a (mod m) , x = b (mod n)

has solution iff a = b (mod (m,n) ).Also prove that system has unique
solution with respect to modulo [m , n].

Proof:
Let x = c is solution of given system, then
¢c =a(modm),c = b(modn).

=ml|c—a, n|c—0b

Let (m,n) =d, thend|m, d|n
=d|c—a, d|lc—0

=d|(c—b)—(c—a)
=d|a—"b

= a = b( mod d).

Thus a = b (mod (m, n))
Converse Part

Ifa = b(mod(m, n))
a = b(modd). where d = (m , n).
= d|la—-10

Thus, d | a — b and (m , n) = d.

then, by theorem we say that

my + (a—b) = 0 (mod n) has solution say, y;
my; + (a—0b) = 0 (mod n)

= a + my; = b(modn) ... (1)



we can write m | my;
= ml|a+my —a
= a+my; =a (mod m) .o, (2)

By (1) and (2),
xr = a + my; is a solution of given system.
Hence, given system has solution.

Now, we prove that system has unique solution.

Suppose, x; and y; are two solutions of given system,then
1 = a(modm), 1 = b(modn)

. &

y1 = a(modm), y1 = b(modn)

= 21 =y (modm), x5 = y; (modn)
= mlz—y, nlzi—un

= [m,n] |21 -y

= x1 = y; (mod [m,n] )

Thus, system has Unique solution with respect to modulo [m , n].
Remark : If ¢™ ' =1 (mod m) and d is the order of a modulo m, then d | n.

% Theorem 5 : If (a,m) =1, a™ ' =1 (mod m) and a™ # 1 (mod m) for any proper divisor
n of m-1 then prove that m is prime.
Proof :

From the above remark, We know that m-1 is the order of a modulo m.
By Euler’s Theorem = a®™) =1 (mod m)

Hence, ¢(m)>m —1,

But for any integers m > 1, we must have ¢(m) < m — 1,

Thus ¢(m) =m — 1, i.em is prime.

Hence Proved.

x Theorem 6 : State and Prove Chinese Remainder Theorem.
or
State and Prove Sun-Tsu Theorem.

Statement :
Let my, mo, ..., my be pairwise relatively prime positive integers.
The system of congruences = = a; (mod m;),Vi = 1,2, ..., k has unique solution.
E m
r =), —uxia; (mod m
55 o (mo )

where m = my - ma.....my, —uz; =1 (mod m;)



Proof :

m
— = 1MmM1Mma..... My 1My q1..... mg,
my
Clearly , ( m,mi ) =1Vi (1)
my
.. By Theorem (1), we can write
— x = 1 (mod m;) has solution say x;.
my
Thus, ﬁxi =1 (mod my) Vi=1,2,..,k (2)
m

By equation (1), we say that

m o 7 s
mj’ﬁ 7v]7éz

()

=M=y (mod my), Vi #i.

m;

= iaixi =0 (mod m;), Vj #i.

= ™ iz = 0 (mod m;), Yj #i.
i=1 M1
53 Mz = Pas (modmy), Vi =1,2,...k
—aix; = —aj;x; (mod m;), Vj=1,2,... k.
& i my i)y V)
k0
= Y —aix; = a; (mod my), Vi =1,2,..,k. (By equation (2))
=1 Ml
B my
Thus, > —aix; is solution of given system.
i=1 Ml
k.
Hence, z = ) —aix; (mod m;), Vj =1,2,... k.
i=1 M
E m
=x =Y, —aix; (mod m) is a required solution.
i=1 M

¢ Now, We Prove Uniqueness

If y is another solution of given congruences then
y = a; (mod m;) and x = a; (mod m;) i=1,2,...,k

=y=x (modm;). Vi=1,2,..k.
= y =z (mod my - my.....my,)

=y =x (mod m)

Hence, Given system has Unique Solution.

—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0



Solve the equation.

(1) 111z = 75 (mod 321)
Sol.
Here, compare the given eq. with axz +b =0 (mod m)

a=111, b= -75, m =321
(a,m) = (111,321) =3 and 3| (—75)
.. Given eq. has solution, it has 3 solution.

111z = 75 (mod 321)

= 37z = 25 (mod 107)
= 107 | 37x — 25
= 37z —-25—-107y =0, ye 2
= 37(z—-3y—1)+4y+12=0
= 3Tu+4y+12=0, whereu =2 —3y — 1
= u=0, y=(-3)
Now, from eq of u
= z=(-8)

c.x = (—8) (mod 107)
c. 2 =99 (mod 107)
2o = 99 is Perticular Solution.

Hence, Required Solution are

x:x0+%t, 0<t<d-1

=99+ 107t , t=20,1,2

ie x =99, 203, 315 (mod 321) are required Solution.

(2) 6 + 15y =9 (mod 18)

Sol.

Here,  (6,15,18)=3 and 3| (-9),

.. Given eq. has solution, it has 18 - 3 = 54 solution.

6z + 15y =9 (mod 18)

= 2z + by = 3 (mod 6)
= 6|2zx+5y—3
= 2z4+5y—3—62=0, z€ 2
= 2(z+2y—32—-1)+y—1=0
= 2u+y—1=0, whereu=2+2y—32—-1
= y=1-—2u
Now, from eq of u
= rz=5u+32—-1



Hence The Required Solutions are,

r=5u+3z—1(mod 18), y=1-—2u (mod 18)
where, z=0 to 5 and u= 0 to 8.

H.W:

(3) 122 + 15 = 0 (mod 45)
Sol.
Here, compare the given eq. with az +b =0 (mod m)

a=12, b=15 m=45
(a,m) = (12,45) =3 and 3|15

.. Given eq. has solution, it has 3 solution.

122 4+ 15 = 0 (mod 45)

= 4r+5=0 (mod 15)

= 15 |4z +5

= 4drx+5—-15y=0, ye 2
= =10, y=3

.. 2o = 10 is Perticular Solution.

Hence, Required Solution are

x:xo—i—%t, 0<t<d-—1

r=10415t,  t=0,1,2
i.e x = 10, 25, 40 (mod 45) are required Solution.

(4) 18z = 30 (mod 42)
Sol.
Here, compare the given eq. with az +b =0 (mod m)

a=18 b= -30, m =42
(a,m)=(18,42) =6 and 6| (—30)

.. Given eq. has solution, it has 6 solution.

18z = 30 (mod 42)
3z =5 (mod 7)
7|3z -5
3r—5—-Ty=0, ye 2
z=4, y=1

R R

.. o = 4 is Perticular Solution.



Hence, Required Solution are

x:xv+%t, 0<t<d-—1
r=4+Tt,  £=0,1,2,34,5

ie x = 4,11,18,25,32,39 (mod 42) are required Solution.

(5) 92 = 21 (mod 30)

Sol.
Clearly,
(9,30) =3 and 3| —-21
.. Given Eq. has solution, it has 3 solution.
Here,

9z = 21 (mod 30)

= 3z =7 (mod 10)

= 10 |3z —7

= 3x—7—-10y=0, ye 2
= =9, Yy=2

.. xg = 9 is Perticular Solution.
Hence, Required Solution are

x:xy+%t, 0<t<d—1

z=9+10t, t=0,1,2

ie x =9, 19, 29 (mod 30) are required Solution.

(6) 103z = 57 (mod 211)
Sol.
Clearly,

(103,211) =1 and 1] (—57)

.. Given Eq. has solution, it has one solution.

Here, 103z = 57 (mod 211)
= 211 | 103z — 57
= 103x — 57 =211y, y€ Z
= 103x — 211y — 57 =0
= 103(z — 2y) — by — 57 =0,
= 103u — by — 57 = 0 where, u=2—2y ....... (1)
=520u—y—11)4+3u—-2=0
=5+3u—2=0  where, v =20u —y — 11 .......
so, wv=1u=-1

9



by, (2) v=20u—y—11 = y = —32
by, (1) u =2 — 2y = x = —65

r = —65 (mod 211 )
. x =146 (mod 211 ) is required solution.

(7) 863x = 880 (mod 2151)

Sol.
Clearly,
(863,2151) =1 and 1 | (—880)
.. Given Eq. has solution, it has one solution.
Here, 863z = 880 (mod 2151)

= 2151 | 863z — 880

= 863z — 2151y — 8800

= 863(x —2y —1) — 425y — 17=0

= 863u — 425y — 17=0 where, u=2—2y—1
= 425(2u —y) +13u—17=0

= 4250+ 13u —17=0 where, v=2u—y  .......
= 13(32v4+u)+%9—-17=0

= 1B3w+9%9—17=0  where, w=32v+u
w=2, v=-1

Now, w=32v+u = u=34
By, (2) y =69
By, (1) x =173
= x = 173 (mod 2151) is required solution.

(8) 2x + Ty =5 (mod 12)

Sol.

Here, (2,7,12)=1 and 1| (-5),

.. Given eq. has solution, it has 12 solution.

2x + Ty =5 (mod 12)

= 12|2x+T7y—5
= 20 +Ty—5—122=0
= 2(z—3y—2—-62)+y—1=0
= 2u+y—1=0, whereu=2x+3y —2 — 62
= Yy=1—=2u
Now, from eq of u
= T=Tu+6z—=1

Hence The Required Solutions are,
r=Tu+6z—1(mod 12), y=1-2u (mod 12)
where, z=0,1 and u= 0 to 5.
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Solve the system of congruences.

(1) 2 =2 (mod 3) ;
Sol.

By Sun-Tsu Theorem |,

=3 (modb) ;

z =2 (mod 7)

z =2 (mod 3)
r =3 (mod 5)
x =2 (mod 7)

a1:2, (12:3, CL3:2
m1:3, m2:5, m3:7
m=mmoms=3-5-7=105
ﬁaciEl(moal m;); 1=1,2,3

35z1 = 1 (mod 3)
21zy =1 (mod 5)
1523 = 1 (mod 7)

Now,

(2) 2z =1 (modb) ; 3z=1
Sol.
We can write,

2x =

and also,

:>371:27 .’L‘gzl, l‘gzl

3. m
x z=Z1 s (mod m)
r=[35-2-24+21-3-1415-2-1] (mod 105),
x = 233 (mod 105),
x = 23 (mod 105), which is req solution.
(mod 7)

1 (modb) = 5|2x—1 = z =3 (mod)5)

3r=1(mod7) = 7|3x—1 = x=5(mod7)

Therefore, Given system is equivalent to,

By Sun-Tsu Theorem |,

z =3 (mod 5)
r =5 (mod 7)
a1:3, a2:5,

m1=5, m2=7,
m=mumeo=>5-7=235
ﬁxizl (mod m;); i

1,2

Try =1 (mod 5)
brg =1 (mod 7)

25| Tey —1; 7|5z —1
=r1=3;, T9=23
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Now
2

m
% 1:231 ——ais (mod m)
x=[7-3-3+5-5-3] (mod 35),
x = 138 (mod 35),
x = 33 (mod 35), which is req solution.

H.W:
B)z=1(mod4) ; x=3(mod5) ; x=2(modT)
Sol.
z =1 (mod 4)
z =3 (mod 5)
z =2 (mod 7)

By Sun-Tsu Theorem |,

Cl]zl, a2:3, &3:2
m1:4, m2:5, m3:7
m=mimoms=4-5-7=140
ﬁxizl (mod m;); 1=1,2,3

35x1 =1 (mod 4)
28x9 =1 (mod 5)
20x3 =1 (mod 7)
413501 —1; 5|28z —1; 7]20z; —1
=x1=3;, 12=2; x3=206

Now,

E

1

8
Il
M

i
L
=

aiz; (mod m)

W
hax

1-3+28-3-2+20-2-6] (mod 140),
(mod 140),
(mod 140), which is req solution.

—_
w

CHE
11

O Ot
w

(4) x = -2 (mod 12) ; x =6 (mod 10) ; z =1 (mod 15)
Sol.

Here, (m;,m;) #1, Vi,j
.. we can not apply Sun Tsu theorem directly.
Here, z = -2 (mod 12) = 12|z +2

=>4|z+2, 3|z+2
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= z=-2(mod4) & z=-2(mod3)

Now,
x =6 (mod 10) is equivalent to 2 = 6 (mod 2) and = 6 (mod 5)
& x =1 (mod 15) is equivalent to z =1 (mod 3) and z =1 (mod 5)

Thus, given system is equivalent to

—2 (mod 4) ie. =2 (mod 4)
—2 (mod 3) ie. xz =1 (mod 3)
(mod 2) ie. x=0 (mod 2)

(mod 5) i.e. x=1 (mod5)

8 8 8 8

S D

Since, x = 2 (mod 4) & x =0 (mod 2) are satisfied by x = 2
Sox=2(mod[2,4])
c.x =2 (mod 4)

Hence, the Given system is equivalent to,

r =2 (mod 4)
r =1 (mod 3)
x =1 (mod 5)

Now, by Sun-Tsu Theorem |,

a1:2, CL2:1, a3:1
m=mimomsz=4-5-7=060
ﬁxi =1 (mod m;); 1=1,2,3
m;
1521 =1 (mod 4)
20z2 = 1 (mod 3)
1223 =1 (mod 5)

4 |15m —1; 3|20m —1; 5|12z —1
:>x1:37 33'2:2, 1'3:3

Now,

E

aiz; (mod m)

8
11l
NS

i
3

1

[15-2-34+20-1-2+12-1-3] (mod 60),
166 (mod 60),
46 (mod 60), which is req solution.

8 8 8
e
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Que: Find The order of 5 modulo 13.

Sol.
Let x be order of 5 modulo 13
Then we can write 5* = 1 (mod 13)
Here, ¢(13) =12 s0 1,2,3,4,6 or 12 (divisors of 12) can be order of 5 modulo 13
we check them one by one,
clearly, 5! =5 | 5% 1 (mod 13)
52 =25 , 25 % 1 (mod 13)
53 =125 , 125 # 1 (mod 13)
5% =625 , 625 =1 (mod 13)
.. 4 is order of 5 modulo 13.

H.W: Find The order of 2 modulo 7.
(Ans= 3)
Sol.
Let x be order of 2 modulo 7
Then we can write 2* = 1 (mod 7)
Here, ¢(7) =6 so 1,2,3 or 6 (divisors of 6) can be order of 2 modulo 7
we check them one by one,
clearly, 2! =2 | 2#£ 1 (mod 7)
22=4 ,4#1 (mod 7)
22=8 ;8=1 (mod7)
.. 3 is order of 2 modulo 7.

- Dipali M. Mistry
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